Sains Malaysiana 54(6)(2025): 1509-1521

http://doi.org/10.17576/jsm-2025-5406-07

 

Peningkatan Kecekapan Proses Penyahoksigenan Minyak Isirung Sawit kepada Biojet Fuel melalui Pengoptimuman Pemangkin FeMo/ACB menggunakan Kaedah Rangsangan Permukaan

(Improving the Efficiency of Palm Kernel Oil Deoxygenation Process to Biojet Fuel through FeMo/ACB Catalyst Optimization using Surface Stimulation Method)

 

N. ASIKIN-MIJAN1,*, SALMA SAMIDIN2, N. SYAHIRAH ZAKI1, MEGAN XIN YI RAVINDRAN1, MOHD SYAWAL YUSOP1,5, ABDULKAREEM-ALSULTAN GHASSAN3, TAUFIQ-YAP YUN HIN1 & LEE HWEI VOON4  

 

1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Jabatan Kejuruteraan Kimia & Proses, Fakulti Kejuruteraan & Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Pusat Kecemerlangan Sains dan Teknologi Katalisis (PutraCAT), Fakulti Sains, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

4Nanoteknologi dan Pusat Penyelidikan Katalsis (NanoCaT), Institut Pengajian Siswazah, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

5Jabatan Sains dan Teknologi, Universiti Putra Malaysia Kampus Bintulu, 97008 Bintulu, Sarawak, Malaysia

 

Diserahkan: 19 September 2024/Diterima: 25 Februari 2025

 

Abstrak

Akibat daripada kesan pemanasan global dan krisis kehabisan sumber tenaga fosil, terdapat alternatif baharu untuk menggantikan penggunaan bahan api fosil kepada bahan api boleh diperbaharui iaitu biojet daripada proses penyahoksigenan (DO) minyak isirung sawit (PKO) menggunakan mangkin FeMo/ACB. Proses pengoptimuman ke atas penyahoksigenan PKO menggunakan mangkin FeMo/ACB telah dijalankan dengan metodologi rangsangan permukaan (RSM) bersama dengan reka bentuk komposit pusat (CCD). Tiga parameter telah difokuskan; jumlah mangkin (1-9) wt%, suhu tindak balas (270-350) ℃ dan tempoh tindak balas (30-300) min. Tindak balas yang dikaji ialah hasil selektiviti terhadap bahan api jet (BJF) aktiviti biojet. Model kuadratik dan model linear telah dipilih untuk menentukan selektiviti bahan api jet (C10-C17). Penilaian ke atas interaksi antara parameter telah dikaji dan keputusan menunjukkan bahawa kesan interaksi antara suhu tindak balas dan masa memberikan kesan impak yang besar terhadap kenaikan aktiviti DO. Pekali variasi dan R2 masing-masing adalah3.38% dan 0.9652 menunjukkan ketepatan model yang tinggi. DO terus dioptimumkan menggunakan RSM dan keputusan menunjukkan bahawa tindak balas DO berjaya dicapai pada paras optimum suhu 320 °C dan masa tindak balas 165 minit dengan menghasikan 95% produk selektif terhadap bahan api jet.

Kata kunci: Kaedah Rangsangan Permukaan (RSM); mangkin; minyak isirung sawit (PKO); pengoptimuman; penyahoksigenan (DO)

 

Abstract

Due to the effects of global warming and the depletion of fossil fuel resources, new alternatives have emerged to replace fossil fuels with renewable fuels, such as biojet fuel from the deoxygenation (DO) process of palm kernel oil (PKO) using an FeMo/ACB catalyst. The optimization process for the DO of PKO using the FeMo/ACB catalyst was conducted using the Response Surface Methodology (RSM) along with Central Composite Design (CCD). Three parameters were focused on: catalyst amount (1-9 wt%), reaction temperature (270-380 °C), and reaction time (30-240 min).  The response studied was the result of the secessivities to jet fuel (BJF) of biojet activity. Quadratic and linear models were selected to determine hydrocarbon selectivity/Bio jet (BJF) (C10-C17). The evaluation of the interactions between the parameters was studied, and the results showed that the interaction between reaction temperature and time had a significant impact on the increase in DO activity. The coefficient of variation and R2 were 3.38% and 0.9652, respectively, suggesting high accurary of the model. DO was further optimized using RSM, and the results showed that the DO reaction was successfully achieved at an optimum temperature of 320 °C and a reaction time of 165 min with 95% bio jet fuel selectivity.

Keywords: Catalyst; deoxygenation (DO); optimization; palm kernel oil (PKO); Response Surface Methodology (RSM)

 

RUJUKAN

Abu Tahari, M.N., Salleh, F., Tengku Saharuddin, T.S., Samsuri, A., Samidin, S. & Yarmo, M.A. 2020. Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations. International Journal of Hydrogen Energy 46(8): 24791-24805.

Ammar, M., Omer, M., Aman, S., Hamed, A., Abbas, S., Shaheen, S., Abbas, A. & Shakeel, S.N. 2022. Fatty acid profiling and physiochemical characterization of Chlorella sorokiniana potentially used for biofuel production. Sains Malaysiana 51(8): 2547-2557.

Asikin-Mijan, N., Ooi, J.M., AbdulKareem-Alsultan, G., Lee, H.V., Mastuli, M.S., Mansir, N., Alharthi, F.A., Alghamdi, A.A. & Taufiq-Yap, Y.H. 2020a. Free-H2 deoxygenation of Jatropha curcas oil into cleaner diesel-grade biofuel over coconut residue-derived activated carbon catalyst. Journal of Cleaner Production 249: 119381.

Asikin-Mijan, N., Rosman, N.A., AbdulKareem-Alsultan, G., Mastuli, M.S., Lee, H.V., Nabihah-Fauzi, N., Lokman, I.M., Alharthi, F.A., Alghamdi, A.A., Aisyahi, A.A. & Taufiq-Yap, Y.H. 2020b. Production of renewable diesel from Jatropha curcas oil via pyrolytic-deoxygenation over various multi-wall carbon nanotube-based catalysts. Process Safety and Environmental Protection 142: 336-349.

Ayadi, M., Awad, S., Villot, A., Abderrabba, M. & Tazerout, M. 2020. Heterogeneous acid catalyst preparation from olive pomace and its use for olive pomace oil esterification. Renewable Energy 165(Part 2): 1-13.

Derawi, D., Zahidi, N.H.M. & Baharudin, K.B. 2023. Reka bentuk pasir pantai mesoliang bagi penyahoksigenan bermangkin minyak masak terpakai kepada bahan api keterbaharuan. Sains Malaysiana 52(11): 3177-3187.

Dodrill, B.C. 2015. Measurements with a VSM. Westerville: Lake Shore Cryotronics, Inc.

Farabi, M.S.A., Ibrahim, M.L., Rashid, U. & Taufiq-Yap, Y.H. 2019. Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management 181: 562-570.

Gamal, M.S., Asikin-Mijan, N., Khalit, W.N.A.W., Arumugam, M., Izham, S.M. & Taufiq-Yap, Y.H. 2020. Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology 208: 106519.

Itthibenchapong, V., Srifa, A., Kaewmeesri, R., Kidkhunthod, P. & Faungnawakij, K. 2017. Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts. Energy Conversion and Management 134: 188-196.

Ong, M.Y., Nomanbhay, S., Kusumo, F., Raja Shahruzzaman, R.M.H. & Shamsuddin, A.H. 2021. Modeling and optimization of microwave-based bio-jet fuel from coconut oil: Investigation of response surface methodology (RSM) and artificial neural network methodology (ANN). Energies 14(2): 295.

Ravindran, M.X.Y., Asikin-Mijan, N., Ong, H.C., Derawi, D., Yusof, M.R., Mastuli, M.S., Lee, H.V., Wan Mahmood, W.N.A.S., Razali, M.S., Abdulkareem Al-Sultan, G. & Taufiq-Yap, Y.H. 2022. Feasibility of advancing the production of bio-jet fuel via microwave reactor under low reaction temperature. Journal of Analytical and Applied Pyrolysis 168: 105772.

Soltani, S., Rashid, U., Al-Resayes, S.I. & Nehdi, I.A. 2017. Chapter Sixteen - Mesoporous catalysts for biodiesel production : A new approach. In Clean Energy for Sustainable Development, disunting oleh Rasul, M.G., Azad, A.K. & Sharma, S.C. Academic Press. hlm. 487-506.

Wan Khalit, W.N.A., Asikin-Mijan, N., Marliza, T.S., Safa-Gamal, M., Shamsuddin, M.R., Azreena, I.N., Saiman, M.I. & Taufiq-Yap, Y.H. 2022. One-pot decarboxylation and decarbonylation reaction of waste cooking oil over activated carbon supported nickel-zinc catalyst into diesel-like fuels. Journal of Analytical and Applied Pyrolysis 164: 105505.

Why, E.S.K., Ong, H.C., Lee, H.V., Chen, W.H., Asikin-Mijan, N., Varman, M. & Loh, W.J. 2022. Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel. Energy 239: 122017.

Zdainal Abidin, S.N., Lee, H.V., Juan, J.C., Rahman, N.A. & Taufiq-Yap, Y.H. 2019. Production of green biofuel by using a goat manure supported Ni-Al hydrotalcite catalysed deoxygenation process. RSC Advances 9(3): 1642-1652.

 

*Pengarang untuk surat-menyurat; email: nurul.asikin@ukm.edu.my

 

 

 

 

 

 

 

           

sebelumnya